“Monodispersed microfluidic droplet generation by shear focusing microfluidic device,” is from 2006. It’s a study on the design of the flow focusing droplet generator. It explores the role of flow rate and pinched geometry on the droplets. At the time, it wasn’t completely clear what these droplets could be used for. I was looking at them as little storage containers for cells.
In 2016, digital PCR was a clear application of this technology. A PCR reaction was segregated into lots of little droplets. Each droplet either has a DNA molecule or does not. As a consequence, the PCR reaction makes it go green or not. Instead of trying to interpret different levels of green fluorescence (which is relatively hard to quantify), the scientist can just count the bright droplets (much easier to quantify). “Centrifugal micro-channel array droplet generation for highly parallel digital PCR” presents an unconventional droplet generator to make lots of little droplets for that application.
The application I’m working toward is a little different. I want to make particles based on these droplets. The little particles will have a sensor on them so that we can detect what is happening near to the particle. The particle might then respond by glowing green or by releasing a drug. Similar particles have applications in cosmetics and lubricants. I think that we can make them smarter. We can apply them to research (reporting cell environments) diagnostics and maybe therapeutics (some day).