Lithium ion batteries are in all kinds of high performance devices. I made a little video talking about how they work. They store a good amount of energy, release it fast enough for a cell phone, and don’t blow up all that often. Typically, lithium or lithium-ion batteries need to be assembled without the presence of water or oxygen which makes them less than ideal for DIY. The old potato battery with lithium is a bad idea.
What about sodium batteries? Sodium is another alkali metal like lithium. It should work similarly, but it’s way cheaper. You can buy sodium hydroxide for $8 a pound at the hardware store. That’s about half elemental sodium by mass. That’s an order of magnitude less expensive than lithium. The price per watt-hour stored could get considerably lower. The lowest that prices can go is the price of materials, and sodium is cheap. For now, though, the cost of materials is not the biggest part of the final battery price. The cost of assembly, housing, and associated electronics is a bigger share of the pie, so it makes sense to work on those first.
What is not so good about sodium batteries? Sodium metal stores less energy per atom, so you get a lower voltage. It’s also a lot heavier, so you get less energy per unit mass. Sodium is more explosive in contact with water than lithium. It’s harder to pack into electrodes. Where graphite holds lithium and lets it migrate, the equivalent for sodium doesn’t work so well. As you charge a LiFePO4 battery, you move lithium into a graphite cathode for storage. Lithium slips between the layers of graphite, but sodium doesn’t fit.
If those problems could be overcome, sodium batteries would be great for stationary storage. Sodium batteries would be heavy (no good for mobile) but cheap (good for large scale). Aquion, Faradion, and GE are all working on it. Several articles from academic labs have come out very recently showing off sodium battery technology. So what are the major hold-ups? Two reviews talk about the issues, and they are all challenging.
I’m interested in iron batteries. Iron is cheap, ubiquitous, and I think the sheer volume of iron available may make it a good candidate for grid storage. So I’m playing with it a bit. Check out the vlog: